Info@NationalCyberSecurity
Info@NationalCyberSecurity

IoT empowered smart cybersecurity framework for intrusion detection in internet of drones | #hacking | #cybersecurity | #infosec | #comptia | #pentest | #ransomware


  • Diaz Linares, I.; Pardo, A.; Patch, E.; Dehghantanha, A.; Choo, K.K.R. IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle (UAV) Case Study. In Handbook of Big Data Analytics and Forensics; Springer: Berlin, Germany, 2022; pp. 7–39.

  • Aloqaily, M., Boucher, O., Boukerche, A. & Al Ridhawi, I. Design guidelines for blockchain-assisted 5G-UAV networks. IEEE Netw. 35, 64–71 (2021).

    Article 

    Google Scholar 

  • Aldhyani, T. H. & Alkahtani, H. Attacks to automatous vehicles: A deep learning algorithm for cybersecurity. Sensors 22, 360 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aloqaily, M., Hussain, R., Khalaf, D., Hani, D. & Oracevic, A. On the role of futuristic technologies in securing UAV-supported autonomous vehicles. IEEE Consum. Electron. Mag. 11, 93–105 (2022).

    Article 

    Google Scholar 

  • Abdani, S.R.; Zulkifley, M.A.; Zulkifley, N.H. A lightweight deep learning model for covid-19 detection. In Proceedings of the 2020 IEEE Symposium on Industrial Electronics & Applications (ISIEA), Kuala Lumpur, Malaysia, 17–18 July 2020; pp. 1–5.

  • Gharibi, M., Boutaba, R. & Waslander, S. L. Internet of drones. IEEE Access 4, 1148–1162. https://doi.org/10.1109/ACCESS.2016.2537208 (2016).

    Article 

    Google Scholar 

  • Khan, A. A. et al. BIoMT: A state-of-the-art consortium serverless network architecture for healthcare system using blockchain smart contracts.”. IEEE Access 10, 78887–78898 (2022).

    Article 

    Google Scholar 

  • Grieco, L.A.; Boggia, G.; Piro, G.; Jararweh, Y.; Campolo, C. Ad-Hoc, Mobile, and Wireless Networks. In Proceedings of the 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, 19–21 October 2020; Springer Nature: Berlin, Germany, 2020; Volume 12338.

  • Rademacher, T. Artificial Intelligence and Law Enforcement 225–254 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-32361-5.

    Book 

    Google Scholar 

  • A. Muhammad, M. Asad, and A. R. Javed, “Robust early stage botnet detection using machine learning,” in 2020 International Conference on Cyber Warfare and Security (ICCWS). IEEE, 2020, pp. 1–6.

  • Saif, W. S., Esmail, M. A., Ragheb, A. M., Alshawi, T. A. & Alshebeili, S. A. Machine learning techniques for optical performance monitoring and modulation format identification: A survey. IEEE Commun. Surv. Tutor. 22(4), 2839–2882 (2020).

    Article 

    Google Scholar 

  • Ala’a Al-Habashna. “Building Height Estimation using Street-View Images, Deep-Learning, Contour Processing, and Geospatial Data.” CRV. 2021.

  • Barletta, V. S., Caivano, D., Nannavecchia, A. & Scalera, M. A spell checking web service API for smart city communication platforms. Open J. Appl. Sci. 9, 819–840 (2019).

    ADS 

    Google Scholar 

  • Chang, C.-W., Lee, H.-W. & Liu, C.-H. A review of artificial intelligence algorithms used for smart machine tools. Inventions 3, 41 (2018).

    Article 

    Google Scholar 

  • Charan, DL Rama, et al. “Convolutional Neural Network based Water Resource Monitoring Using Satellite Images.” 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2020.

  • Estrada, Elsa. “Smart City visualization tool for the Open Data georeferenced analysis utilizing machine learning.” Instituto de Ciencias Sociales y Administración (2018).

  • Fedorova, Stanislava. GANs for Urban Design. Preprint at https://arXiv.org/quant-ph/2105.01727 (2021).

  • Moosavi, V. “Urban morphology meets deep learning: Exploring urban forms in one million cities, towns and villages across the planet. arXiv e-prints, page. Preprint at https://arXiv.org/quant-ph/1709.02939 (2017).

  • Supramongkonset, J.; Duangsuwan, S.; Promwong, S. A WiFi Link Budget Analysis of Drone-based Communication and IoT Ground Sensors. In Proceedings of the 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Pattaya, Thailand, 1–3 April 2021; pp. 234–237.

  • Yin, Z.; Song, Q.; Han, G.; Zhu, M. Unmanned optical warning system for drones. In Global Intelligence Industry Conference (GIIC 2018); International Society for Optics and Photonics: Bellingham, DC, USA, 2018; Volume 10835, p. 108350Q.

  • Koslowski, R. & Schulzke, M. Drones along borders: Border security UAVs in the United States and the European Union. Int. Stud. Perspect. 19, 305–324 (2018).

    Article 

    Google Scholar 

  • Ozmen, M.O.; Yavuz, A.A. Dronecrypt-an efficient cryptographic framework for small aerial drones. In Proceedings of the MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–6.

  • Khan, M. A. et al. An efficient certificate-based aggregate signature scheme for internet of drones. Secure. Commun. Netw. 2022, 9718580 (2022).

    Google Scholar 

  • Ranjitha, K.; Pathak, D.; Tammana, P.; Antony, F.A.; Alladi, T. Accelerating PUF-based UAV Authentication Protocols Using Programmable Switch. In Proceedings of the 2022 14th International Conference on COMmunication Systems & Networks (COMSNETS), Bangalore, India, 4–8 January 2022; pp. 309–313.

  • Li, S. & Bai, Y. Deep learning and improved HMM training algorithm and its analysis in facial expression recognition of sports athletes. Comput. Intell. Neurosci. 2022, 1027735 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuli, E. A., Golam, M., Kim, D. S. & Lee, J. M. Performance enhancement of optimized link state routing protocol by parameter configuration for UANET. Drones 6, 22 (2022).

    Article 

    Google Scholar 

  • Khan, M. A. et al. A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems. IEEE Trans. Ind. Inform. 18, 3416–3425 (2021).

    Article 

    Google Scholar 

  • Maghazei, O.; Netland, T.H.; Frauenberger, D.; Thalmann, T. Automatic drones for factory inspection: The role of virtual simulation. In Proceedings of the IFIP International Conference on Advances in Production Management Systems; Springer: Berlin, Germany, 2021; pp. 457–464.

  • Kapoutsis, A. C., Michailidis, I. T., Boutalis, Y. & Kosmatopoulos, E. B. Building synergetic consensus for dynamic gas-plume tracking applications using UAV platforms. Comput. Electr. Eng. 91, 107029 (2021).

    Article 

    Google Scholar 

  • Nguyen, H.P.D.; Nguyen, D.D. Drone application in smart cities: The general overview of security vulnerabilities and countermeasures for data communication. In Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead; Springer: Berlin, Germany, 2021; pp. 185–210.

  • Kumar, A., Elsersy, M., Darwish, A. & Hassanien, A. E. Drones combat COVID-19 epidemic: Innovating and monitoring approach. In Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches (eds Kumar, A. et al.) 175–188 (Springer, 2021).

    Chapter 

    Google Scholar 

  • Aydin, Y.; Kurt, G.K.; Ozdemir, E.; Yanikomeroglu, H. Group authentication for drone swarms. In Proceedings of the 2021 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Cleveland, OH, USA, 12–14 October 2021; pp. 72–77.

  • Saha, H. N., Roy, R., Chakraborty, M. & Sarkar, C. IoT-enabled agricultural system application, challenges and security issues. In Agricultural Informatics: Automation Using the IoT and Machine Learning (eds Choudhury, A. et al.) 223–247 (Wiley, 2021).

    Chapter 

    Google Scholar 

  • Liu, C. & Zhan, R. Global analysis of active defense technologies for unmanned aerial vehicle. IEEE Aerosp. Electron. Syst. Mag. 37, 6–31 (2022).

    Article 

    Google Scholar 

  • Jares, G.A.; Valasek, J. Flight Demonstration and Validation of Control Acquisition Autopilot Attack. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2341.

  • Talaei Khoei, T., Ismail, S. & Kaabouch, N. Dynamic selection techniques for detecting GPS spoofing attacks on UAVs. Sensors 22, 662 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kafi, M. A. et al. A study of wireless sensor networks for urban traffic monitoring: Applications and frameworks. Procedia Comput. Sci. 19, 617–626 (2013).

    Article 

    Google Scholar 

  • Mansfield, K.; Eveleigh, T.; Holzer, T.H.; Sarkani, S. Unmanned aerial vehicle smart device ground control station cyber security threat model. In Proceedings of the 2013 IEEE International Conference Technology Homel Security (HST), Waltham, MA, USA, 12–14 November 2013; pp. 722–728.

  • Khan, A. A., Laghari, A. A., Shafiq, M., Awan, S. A. & Gu, Z. Vehicle to everything (V2X) and edge computing: A secure lifecycle for UAV-assisted vehicle network and offloading with blockchain. Drones 6(12), 377 (2022).

    Article 

    Google Scholar 

  • Eyerman, J. et al. Unmanned Aircraft and the Human Element: Public Perceptions and First Responder Concerns; Institute of Homeland Security and Solutions (Citeseer, 2013).

    Google Scholar 

  • Khan, Abdullah Ayub, Asif Ali Laghari, Zaffar Ahmed Shaikh, Zdzislawa Dacko-Pikiewicz, and Sebastian Kot. “Internet of Things (IoT) security with blockchain technology: a state-of-the-art review.” IEEE Access (2022).

  • Rahman, M.F.B.A. Smart CCTVS for Secure Cities: Potentials and Challenges; Rajaratnam School of International Studies (RSIS): Singapore, 2017.

  • Kim, A.; Wampler, B.; Goppert, J.; Hwang, I.; Aldridge, H. Cyber Attack Vulnerabilities Analysis for Unmanned Aerial Vehicles. Aerospace Res. Cent. 2012, 2438.

  • Zeng, Y., Zhang, R. & Lim, T. J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016).

    Article 

    Google Scholar 

  • Soria, P. R., Bevec, R., Arrue, B. C., Ude, A. & Ollero, A. Extracting objects for aerial manipulation on UAVs using low-cost stereo sensors. Sensors 16, 700 (2016).

    Article 
    ADS 

    Google Scholar 

  • Erdelj, M.; Natalizio, E. Drones, Smartphones and Sensors to Face Natural Disasters. In Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Paris, France, 10–15 June 2018; pp. 75–86.

  • Son, Y.; Shin, H.; Kim, D.; Park, Y.; Noh, J.; Choi, K. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors. In Proceedings of the 24th USENIX Security Symposium, Washington, DC, USA, 12–14 August 2015.

  • Zhi, Y., Fu, Z., Sun, X. & Yu, J. Security and privacy issues of UAV: A survey. Mob. Netw. Appl. 25, 95–101 (2019).

    Article 

    Google Scholar 

  • Strohmeier, M., Schafer, M., Lenders, V. & Martinovic, I. Realities and challenges of nextgen air traffic management: The case of ADS-B. IEEE Commun. Mag. 52, 111–118 (2014).

    Article 

    Google Scholar 

  • Hooper, M.; Tian, Y.; Zhou, R.; Cao, B.; Lauf, A.P.; Watkins, L.; Robinson, W.H.; Alexis, W. Securing commercial WiFi-based UAVs from common security attacks. In Proceedings of the MILCOM 2016–2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016; pp. 1213–1218.

  • Hartmann, K.; Giles, K. UAV exploitation: A new domain for cyber power. In Proceedings of the 2016 8th International Conference Cyber Conflict, Tallinn, Estonia, 31 May–3 June 2016; pp. 205–221.

  • Rivera, E.; Baykov, R.; Gu, G. A Study on Unmanned Vehicles and Cyber Security. In Proceedings of the Rivera 2014 ASO, Austin, TX, USA, 2014.

  • Junejo, I. N. & Foroosh, H. GPS coordinates estimation and camera calibration from solar shadows. Comput. Vis. Image Underst. 114, 991–1003 (2010).

    Article 

    Google Scholar 

  • Shakhatreh, H. et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019).

    Article 

    Google Scholar 

  • Cook, K.L.B. The Silent Force Multiplier: The History and Role of UAVs in Warfare. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–7.

  • Siddiqi, M.A.; Khoso, A.M. Aziz, Analysis on Security Methods of Wireless Sensor Network (WSN). In Proceedings of the SJCMS 2018, Sukkur, Pakistan, 10 December 2018.

  • Kong, W. et al. A reliable and efficient task offloading strategy based on multi-feedback trust mechanism for IoT edge computing. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2022.3143572 (2022).

    Article 

    Google Scholar 

  • Pushpa, S. X. & Raja, S. K. Elliptic curve cryptography based authentication protocol enabled with optimized neural network based DoS mitigation. Wirel. Pers. Commun. 124, 1–25 (2022).

    Article 

    Google Scholar 

  • Sengan, S., Khalaf, O. I., Sharma, D. K. & Hamad, A. A. Secured and privacy-based IDS for healthcare systems on E-medical data using machine learning approach. Int. J. Reliab. Qual. Healthc. (IJRQEH) 11, 1–11 (2022).

    Google Scholar 

  • Shaikh, Z. A., Khan, A. A., Teng, L., Wagan, A. A. & Laghari, A. A. BIoMT modular infrastructure: The recent challenges, issues, and limitations in blockchain hyperledger-Enabled E-healthcare application. Wirel. Commun. Mobile Comput. 2022, 1–4 (2022).

    Article 

    Google Scholar 

  • Shaikh, Z. A. et al. Blockchain hyperledger with non-linear machine learning: A novel and secure educational accreditation registration and distributed ledger preservation architecture. Appl. Sci. 12(5), 2534 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aldaej, A., Ahanger, T. A., Atiquzzaman, M., Ullah, I. & Yousufudin, M. Smart cybersecurity framework for IoT-empowered drones: Machine learning perspective. Sensors 22(7), 2630 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qureshi, K. N., Rana, S. S., Ahmed, A. & Jeon, G. A novel and secure attacks detection framework for smart cities industrial internet of things. Sustain. Cities Soc. 61, 102343 (2020).

    Article 

    Google Scholar 

  • Khan, A. A., Shaikh, A. A., Shaikh, Z. A. & Laghari, A. A. Karim S IPM-Model: AI and metaheuristic-enabled face recognition using image partial matching for multimedia forensics investigation with genetic algorithm. Multim. Tools Appl. https://doi.org/10.1007/s11042-022-12398-x (2022).

    Article 

    Google Scholar 

  • Muhammad, A. N. et al. Deep learning application in smart cities: Recent development, taxonomy, challenges and research prospects. Neural Comput. Appl. https://doi.org/10.1007/s00521-020-05151-8 (2020).

    Article 

    Google Scholar 

  • Bhattacharya, S., Somayaji, S. R. K., Gadekallu, T. R., Alazab, M. & Maddikunta, P. K. R. A review on deep learning for future smart cities. Internet Technol. Lett. https://doi.org/10.1002/itl2.187 (2020).

    Article 

    Google Scholar 

  • Elsaeidy, A. A., Jagannath, N., Sanchis, A. G., Jamalipour, A. & Munasinghe, K. S. Replay attack detection in smart cities using deep learning. IEEE Access 8, 137825–137837 (2020).

    Article 

    Google Scholar 

  • Singh, S. K., Jeong, Y.-S. & Park, J. H. A deep learning-based IoT oriented infrastructure for secure smart city. Sustain. Cities Soc. 60, 102252 (2020).

    Article 

    Google Scholar 

  • Chen, D., Wawrzynski, P. & Lv, Z. Cyber security in smart cities: A review of deep learning-based applications and case studies. Sustain. Cities Soc. 66, 102655 (2020).

    Article 

    Google Scholar 

  • Vinayakumar, R. et al. A visualized botnet detection system based deep learning for the internet of things networks of smart cities. IEEE Trans. Ind. Appl. 56(4), 4436–4456 (2020).

    Article 

    Google Scholar 

  • Ferrag, M. A., Maglaras, L., Moschoyiannis, S. & Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inform. Secur. Appl. 50, 102419 (2020).

    Google Scholar 

  • Magaia, N. et al. Industrial Internet of things security enhanced with deep learning approaches for smart cities. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.3042174 (2020).

    Article 

    Google Scholar 

  • Javed, A. R., Usman, M., Rehman, S. U., Khan, M. U. & Haghighi, M. S. Anomaly detection in automated vehicles using multistage attention-based convolutional neural network. IEEE Trans. Intell. Transp. Syst. 22, 4291–300 (2020).

    Article 

    Google Scholar 

  • Afzal, S., Asim, M., Javed, A. R., Beg, M. O. & Baker, T. Urldeepdetect: A deep learning approach for detecting malicious urls using semantic vector models. J. Netw. Syst. Manag. 29(3), 1–27 (2021).

    Article 

    Google Scholar 

  • Andresen, G., Appice, A., Di Mauro, N., Loglisci, C. & Malerba, D. Multi-channel deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020).

    Article 

    Google Scholar 

  • Khan, A. A. et al. Healthcare ledger management: A blockchain and machine learning-enabled novel and secure architecture for medical industry. Hum.-Centric Comput. Inform. Sci. 12, 55 (2022).

    Google Scholar 

  • Manzoor, I. & Kumar, N. A feature-reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 88, 249–257 (2017).

    Article 

    Google Scholar 

  • Kou, L., Ding, S., Ting, Wu., Dong, W. & Yin, Y. An intrusion detection model for drone communication network in SDN environment. Drones 6(11), 342 (2022).

    Article 

    Google Scholar 

  • Musafer, H., Abuzneid, A., Faezipour, M. & Mahmood, A. An enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systems. Electronics 9, 259 (2020).

    Article 

    Google Scholar 

  • Ramadan, R. A., Emara, A.-H., Al-Sarem, M. & Elhamahmy, M. Internet of drones intrusion detection using deep learning. Electronics 10(21), 2633 (2021).

    Article 

    Google Scholar 

  • Khan, A. A. et al. A drone-based data management and optimization using metaheuristic algorithms and blockchain smart contracts in a secure fog environment. Comput. Electr. Eng. 102, 108234 (2022).

    Article 

    Google Scholar 

  • Yao, H., Fu, D., Zhang, P., Li, M. & Liu, Y. MSML: A novel multilevel semi-supervised machine learning framework for intrusion detection system. IEEE Internet Things J. 6, 1949–1959 (2018).

    Article 

    Google Scholar 

  • Jia, Y., Wang, M. & Wang, Y. Network intrusion detection algorithm based on deep neural network. IET Inf. Secur. 13, 48–53 (2019).

    Article 

    Google Scholar 

  • ——————————————————-


    Click Here For The Original Source.

    National Cyber Security

    FREE
    VIEW